Taxonomy-Regularized Semantic Deep Convolutional Neural Networks
نویسندگان
چکیده
We propose a novel convolutional network architecture that abstracts and differentiates the categories based on a given class hierarchy. We exploit grouped and discriminative information provided by the taxonomy, by focusing on the general and specific components that comprise each category, through the minand difference-pooling operations. Without using any additional parameters or substantial increase in time complexity, our model is able to learn the features that are discriminative for classifying often confused sub-classes belonging to the same superclass, and thus improve the overall classification performance. We validate our method on CIFAR-100, Places-205, and ImageNet Animal datasets, on which our model obtains significant improvements over the base convolutional networks.
منابع مشابه
Estimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملDeep Reinforcement Learning with Regularized Convolutional Neural Fitted Q Iteration
We review the deep reinforcement learning setting, in which an agent receiving high-dimensional input from an environment learns a control policy without supervision using multilayer neural networks. We then extend the Neural Fitted Q Iteration value-based reinforcement learning algorithm (Riedmiller et al) by introducing a novel variation which we call Regularized Convolutional Neural Fitted Q...
متن کاملCystoscopy Image Classication Using Deep Convolutional Neural Networks
In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...
متن کاملIntegration of Deep Learning Algorithms and Bilateral Filters with the Purpose of Building Extraction from Mono Optical Aerial Imagery
The problem of extracting the building from mono optical aerial imagery with high spatial resolution is always considered as an important challenge to prepare the maps. The goal of the current research is to take advantage of the semantic segmentation of mono optical aerial imagery to extract the building which is realized based on the combination of deep convolutional neural networks (DCNN) an...
متن کاملCogALex-V Shared Task: CGSRC - Classifying Semantic Relations using Convolutional Neural Networks
In this paper, we describe a system (CGSRC) for classifying four semantic relations: synonym, hypernym, antonym and meronym using convolutional neural networks (CNN). We have participated in CogALex-V semantic shared task of corpus-based identification of semantic relations. Proposed approach using CNN-based deep neural networks leveraging pre-compiled word2vec distributional neural embeddings ...
متن کامل